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Abstract: The antitumor activity of indole-3-carbinol is attributable to its ability to interfere with multiple oncogenic sig-

naling pathways governing cell cycle progression, survival, invasion, and other aggressive phenotypes of cancer cells, es-

pecially those mediated by EGFR/Src, Akt, NF- B, endoplasmic reticulum stress, and nuclear receptors. This broad spec-

trum of antitumor activities in conjunction with its metabolic instability constitutes the rationale for the structural modifi-

cations of indole-3-carbinol and its metabolite diindolylmethane to develop novel classes of antitumor agents with im-

proved potency and distinct mechanisms. Thus, this minireview focuses on the chemical biology of the lead optimization 

of these indole derivatives. 

Keywords: Indole-3-carbinol, bis(3’-indolyl)methane, antitumor agents, OSU-A9, C-DIMs, SR13668. 

INTRODUCTION 

 Ever since the reported epidemiological link between 

high dietary intake of cruciferous vegetables and lower can-

cer risk [1-4], there has been a growing interest in exploring 

the chemopreventive potential of indole-3-carbinol, a com-

mon phytochemical found in Brassica plants. Accumulating 

evidence indicates that the antitumor activity of indole-3-

carbinol is attributable to its ability to interfere with multiple 

oncogenic signaling pathways governing cell cycle progres-

sion, survival, invasion, and other aggressive phenotypes of 

cancer cells [5-9]. Reported signaling targets of indole-3-

carbinol in various cancer cell lines include EGFR/Src [10], 

Akt/NF- B [11-16], stress responses [14, 15], elastase [17], 

and Rho kinase [18]. Moreover, indole-3-carbinol functions 

as a negative regulator of estrogen action in hormone-

sensitive cancer cells through the inhibition of estrogen re-

ceptor (ER)-  signaling [19, 20] and/or induction of cyto-

chrome P-450-mediated estrogen metabolism [21], suggest-

ing its clinical use in hormone-sensitive cancers.  

 From a mechanistic perspective, this diverse spectrum of 

antitumor actions underlies the in vivo efficacy of indole-3-

carbinol in blocking spontaneous or chemically induced tu-

morigenesis in mammary gland, liver, lung, cervix, and gas-

trointestinal tract in different animal model studies [22-28]. 

These preclinical findings have led to the human trials of 

indole-3-carbinol in cervical dysplasia [29], breast cancer 

[30, 31], vulvar intraepithelial neoplasia [32], and recurrent 

respiratory papillomatosis [33], some of which have shown 

positive results.  
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DRAWBACKS OF INDOLE-3-CARBINOL AS AN 

ANTICANCER AGENT 

 Despite these advances in the preclinical development of 
indole-3-carbinol, the following factors may hamper its 
clinical translation. 

1. Low Potency and Poor Cellular Uptake 

 The dose range required for indole-3-carbinol to suppress 
cancer cell proliferation is 50-100 M. This supra-
pharmacological concentration is difficult to achieve in tu-
mor sites. This low anti-proliferative potency might be at-
tributed to its poor cellular absorption as a recent report indi-
cates that only 0.3% of indole-3-carbinol in the culture me-
dium entered the cell [18]. This poor cellular uptake in con-
junction with the metabolic instability of indole-3-carbinol 
described below severely restricts the intracellular concentra-
tions that can be achieved, rendering its pharmacokinetic 
behavior unpredictable. For example, a phase I trial in 
women showed that indole-3-carbinol was not detectable in 
plasma following escalating oral doses even up to 1,200 mg 
[31]. 

2. Metabolic Instability and Pleiotropic Modes of Action 

of its Metabolites 

 The intrinsic instability of indole-3-carbinol in acidic 
milieu arises from the vinyl hemiaminal moiety of the indole 
ring (Fig. 1A, enclosed by dashed line), which is readily sus-
ceptible to acid-catalyzed dehydration and polymerization to 
generate a series of oligomeric products [34], including DIM 
[bis(3’-indolyl)methane, a dimer] and ICZ (indole[3,2b]-
carbazole, a dimer), LTr1 (a liner trimer), CTr (a cyclic 
trimer), and CTet (a cyclic tetramer) (Fig. 1A).  

 Moreover, as each of these major metabolites exhibits its 
own antitumor activities, the observed chemopreventive ef-
fect of indole-3-carbinol in vivo is, at least in part, attributed 
to these metabolic products. Among them, DIM induces 
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apoptosis and cell cycle arrest through the modulation of 
signaling targets similar to those affected by indole-3-
carbinol, including Akt, NF- B, endoplasmic reticulum 
stress, and nuclear receptors, such as ER  and arylhydrocar-
bon receptor (AhR) [35-47]. In contrast, the functions of the 
oligomers ICZ, LTr1, and CTr are mainly associated with 
ER  and AhR [48, 49], while the tetrameric product CTet 
suppressed breast cancer growth by inhibiting the expression 
of cyclin-dependent kinase (CDK)6 and other cell cycle 
regulatory proteins with fivefold higher potency than indole-
3-carbinol [50]. 

3. Hepatotoxicity 

 Indole-3-carbinol was reported to cause centrilobular 
hepatocellular hypertrophy in rodents secondary to the in-
duction of the hepatic biotransformation enzymatic system 
[51, 52]. These pathological changes might underlie the con-
troversy over the role of dietary indole-3-carbinol in in-
creased incidences of uterine adenocarcinoma in animal 
models [51]. Moreover a recent study using a multi-organ 
tumorigenesis animal model indicates that, while indole-3-
carbinol treatment resulted in an increase in the latency of 
carcinogen-induced mammary tumor formation, it promoted 
liver neoplasia [53]. This liver toxicity might limit the long-

term use of concentrated indole-3-carbinol supplements for 
cancer prevention, especially in patients with compromised 
liver functions. 

PHARMACOLOGICAL EXPLOITATION OF IN-

DOLE-3-CARBINOL AND ITS METABOLITES TO 

DEVELOP NOVEL ANTITUMOR AGENTS 

 As indole-3-carbinol and its metabolites exhibit low to 
moderate potencies in suppressing tumor cell proliferation in 
vitro, lead optimization of these compounds to develop novel 
indole derivatives with improved potency has been the focus 
of many recent investigations. This drug discovery effort has 
led to the development of different classes of novel antitu-
mor agents, each of which exhibits a distinct mechanism 
with enhanced in vitro and/or in vivo efficacy against differ-
ent tumor types (Figs. 1B and 2).  

1. OSU-A9, a Potent, Multi-Targeted Agent with a 

Pharmacological Profile Identical to that of Indole-3-

Carbinol 

 OSU-A9 was developed in the authors’ laboratory from 
the scaffold of indole-3-carbinol via N-substitution of the 
vinyl hemiaminal function of the indole ring with a benzene-
sulfonyl moiety, which blocks acid-catalyzed dehydration 
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Fig. (1). (A) Acid-catalyzed polymerization of indole-3-carbinol to form various oligomeric metabolites. (B) Antitumor agents derived from 

indole-3-carbinol, DIM, and ICZ. 
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and polymerization [14]. This modification not only im-
proves the acid stability, but also results in a 100-fold in-
crease in apoptosis-inducing potency as compared to its par-
ent compound. It is noteworthy that OSU-A9 retains all of 
indole-3-carbinol’s characteristic effects on signaling path-
ways to mediate cell cycle arrest and apoptosis induction. In 
breast tumor cells, these signaling mechanisms could be 
categorized into two functional linkages: the Akt-NF- B axis 
and stress response signaling (Fig. 3) [15].  

 In light of the molecular heterogeneity of human tumors, 
the ability of OSU-A9 to target multiple signaling pathways 
by interfering with the interplay between these two signaling 
networks underscores its therapeutic potential in cancer 
treatment. 

The Akt-NF- B Axis 

 Similar to indole-3-carbinol, OSU-A9 blocked signaling 
pathways mediated by Akt and NF- B in prostate cancer, 
breast cancer, and hepatocellular carcinoma cells [14-16]. It 
is noteworthy that these two indole derivatives inhibited NF-

B signaling through two distinct mechanisms. First, both 
agents caused accumulation of the NF- B inhibitor I B as a 
result of drug-induced inactivation of I B kinase (IKK) , a 
downstream effect of Akt inhibition, and consequent de-

crease in I B degradation. Second, these agents exhibited a 
unique suppressive effect on the expression of RelA/p65 
subunit of NF- B. The consequent inhibition of NF- B led 
to changes in the expression level of a series of NF- B-
regulated gene products, including the downregulation of the 
antiapoptotic proteins survivin, Bcl-2, Bcl-xL, and Mcl-1, 
and the upregulation of the proapoptotic protein Bax. 
Moreover, the repression of the cytokine receptor CXCR4 
and the oncoprotein Her2 is noteworthy, as both effects are 
therapeutically relevant to the treatment of HER2-mediated 
breast cancer metastasis.  

Stress Response Signaling 

 OSU-A9 and indole-3-carbinol activated p38 and JNK 
and induced the expression of GADD153, a well-recognized 
endoplasmic reticulum stress-inducible transcription factor, 
suggesting the involvement of cellular stress responses in the 
antitumor effects of these agents [14, 15]. Endoplasmic re-
ticulum stress might also underlie the enhanced expression 
of breast cancer susceptibility genes BRCA1 and BRCA2 
observed in OSU-A9- and indole-3-carbinol-treated breast 
cancer cells [15], both of which have been identified as tu-
mor suppressors for hormone-sensitive cancers [54]. 
Changes characteristic of cellular responses to oxidative 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Ring-substituted DIMs and C-DIMs. 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Schematic representation of the inhibitory and activating effects of OSU-A9 and its parent compound indole-3-carbinol on the Akt-

NF- B signaling axis and stress response signaling, respectively. 
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stress were also detected in drug-treated breast cancer cells, 
including the upregulated expression of AhR and its down-
stream target NF-E2 p45-regulated factor (Nrf2) and the in-
creased expression ratio of ER  to ER  [15]. These findings 
are therapeutically relevant as it is well recognized that AhR 
and Nrf2 control the transcription of genes encoding antioxi-
dants and xenobiotic detoxification enzymes, such as glu-
tathione-S-transferases and NAD(P)H:quinone oxidase 1 
[55, 56], and that suppressed ER  expression characterizes 
the malignant progression of breast cancer [57]. 

 Despite this broad spectrum of pharmacological activi-
ties, nonmalignant cells were less sensitive to the antiprolif-
erative effect of OSU-A9 relative to cancer cell lines. 
Moreover, oral OSU-A9 has been shown to suppress 
xenograft tumor growth in various animal models, including 
that of prostate, breast, and liver, without causing overt tox-
icity or the hepatic changes associated with indole-3-carbinol 
[14-16]. 

2. N-Alkoxy Derivatives of Indole-3-Carbinol, Potent In-

hibitors of CDK6 Gene Expression 

 Based on the report that the naturally occurring N-
methoxy-indole-3-carbinol was a more potent inducer of 
cytochrome P450 activity in cultured cells than the parent 
compound [58], Firestone and coworkers developed a series 
of N-alkoxy-indole-3-carbinol derivatives with alkyl chains 
of one to four carbons in length [59]. Relative to indole-3-
carbinol, these N-alkoxy derivatives showed a significant 
increase in the ability to induce G1 cell cycle arrest in breast 
cancer cells, which directly correlated with the alkyl chain 
length, i.e., C1, 23-fold; C2, 50-fold; C3, 217-fold; C4, 470-
fold. The ability of these N-alkoxy derivatives to block cell 
cycle progression at the G1 phase was attributable to the 
transcriptional suppression of CDK6 expression and the in-
hibition of CDK2 kinase activity. This growth arrest, how-
ever, was not noted when the electron-withdrawing N-alkoxy 
group was replaced by an electron-donating N-methyl func-
tion, suggesting an essential role of the N-alkoxy group in 
interacting with target proteins(s). The investigators pro-
posed that these N-alkoxy derivatives inhibited CDK6 tran-
scription by targeting Sp1 binding to a composite element 
within the CDK6 promoter, reminiscent of the mechanism of 
indole-3-carbinol [60].  

3. Synthetic DIM Analogues, Modulators of Nuclear Re-

ceptors 

 Safe and coworkers have used DIM to develop a series of 
analogues with unique pharmacological activities in target-
ing various nuclear receptors (review: [61]). Structurally, 
these DIM analogues can be classified into two subclasses 
(Fig. 2). 

a. Ring-Substituted DIMs 

 Symmetrical disubstitutions at various positions (1,1’, 
2,2’, 4,4’, 5,5’, 6,6’, and 7,7’) of DIM with methyl or halo 
(Br or Cl) groups gave rise to a series of structural variants, 
among which 5,5’-diMeDIM and 5,5’-diBrDIM are notewor-
thy (Fig. 2) [62, 63]. Both ring-substituted DIMs showed in 
vivo efficacy in suppressing carcinogen-induced rat mam-
mary tumor growth in female Sprague-Dawley rats. Despite 

structural similarity with DIM, 5,5’-diMeDIM and 5,5’-
diBrDIM exhibited mechanisms distinct from that of the 
parental compound in suppressing cancer cell growth, indi-
cating a subtle structure-activity relationship [64]. For exam-
ple, 5,5’-diBrDIM is a mitochondrial poison that induced 
cell death by decreasing mitochondrial membrane potential 
and inducing endoplasmic reticulum stress, whereas minimal 
effects on mitochondrial integrity were noted for DIM.  

b. 1-(p-Substituted Phenyl)DIMs (C-DIMs) 

 Substitutions of a proton with bulky aromatic substituents 
on the methylene group of DIM alter the activity of resulting 
compounds, i.e., C-DIMs, in interacting with various types 
of nuclear receptors [65-68]. It is noteworthy that these C-
DIMs are no longer AhR agonists, but could activate perox-
isomal proliferator-activated receptor (PPAR)  and/or Nur77 
[also known as nerve growth factor (NGF)I-B ] (PPAR  C-
DIMs: [65, 67]; Nur77 C-DIMs: [66, 68]). For example, of 
the representative C-DIM derivatives depicted in Fig. 2, 
DIM-C-pPhtBu and DIM-C-pPhOCH3 are PPAR -specific 
and Nur77-specific agonists, respectively, while DIM-C-
pPhCF3 transactivates both PPAR  and Nur77. Transactiva-
tion of these nuclear receptors activates downstream re-
sponses, including the induction of p21, KLF-4, and caveolin 
1 [69, 70], leading to cell cycle arrest and induction of cell 
death pathways as indicated by caspase activation and 
poly(ADP-ribose)polymerase (PARP) cleavage. In addition, 
a number of PPAR - or Nur77-independent signaling 
mechanisms have also been reported for the proapoptotic 
activities of these agents. These include inhibition of andro-
gen receptor-mediated signaling [71], induction of proapop-
totic genes [68], decreased mitochondrial membrane poten-
tial [72, 73], activation of JNK [72, 74], and endoplasmic 
reticulum stress [75]. Through these complicated modes of 
action, these agents exhibited in vivo efficacy in suppressing 
xenograft tumor growth in nude mice bearing various types 
of cancer, including that of pancreas, bladder, and colon. 
Beyond cancer therapy, DIM-C-pPhtBu also showed neuro-
protective effects against apoptosis induced by the Parkin-
sonian neurotoxicant 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine in primary striatal neurons by suppressing 
NF- B-dependent expression of inflammatory genes in as-
trocytes [76]. 

 More recently, in light of the intimate relationship be-
tween PPAR /Nur77 and retinoid X receptor (RXR), DIM-
C-pPhOCF3 was further used as a scaffold for developing 
RXR ligands, which led to the development of DIM-2-
thienyl-5-(E-CH=CHCO2H) a specific RXR  agonist (Fig. 
1B) [77]. This finding underlines the versatility of DIM as a 
template to develop novel ligands for various nuclear recep-
tors. 

4. SR13668, an Akt Inhibitor 

 Structural modifications of ICZ generated a novel class 
of antitumor agents, of which SR13668 represents an opti-
mal agent [78] (Fig. 1B). The antitumor effect of SR13668 
was mediated the inhibition of growth factor-stimulated Akt 
phosphorylation. However, the mode of action of SR13668 
in blocking Akt activation is distinct from that of many other 
Akt inhibitors, i.e., it does not target the ATP binding site. 
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SR13668 is currently being developed as a chemopreventive 
agent. A recently published pharmacokinetic analysis indi-
cates that this Akt-targeted agent exhibits poor oral bioavail-
ability in both rats and dogs (< 1%) presumably due to its 
low absorption [79]. 

CONCLUSION 

 Recent studies in different laboratories have clearly dem-
onstrated the versatility of using indole-3-carbinol and its 
dimeric metabolites DIM and ICZ as scaffolds to develop 
novel antitumor agents with distinct mechanisms of action. 
As many of these agents show impressive in vivo efficacy in 
suppressing xenograft tumor growth without causing acute 
toxicity in various cancer models, there is urgency in the 
clinical translation of these agents into therapeutic and/or 
chemopreventive agents.  
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ICZ = indole[3,2b]-carbazole 
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